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Traveling waves in rotating Rayleigh-Beard convection: Analysis of modes and mean flow

J. D. Scheef, M. R. Paul, and M. C. Cross
Department of Physics, California Institute of Technology 114-36, Pasadena, California 91125, USA

P. F. Fischer
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, lllinois 60439, USA

(Received 14 May 2003; published 31 December 2003

Numerical simulations of the Boussinesq equations with rotation for realistic no-slip boundary conditions
and a finite annular domain are presented. These simulations reproduce traveling waves observed experimen-
tally. Traveling waves are studied near threshhold by using the complex Ginzburg-Landau e(C@tidn: a
mode analysis enables the CGLE coefficients to be determined. The CGLE coefficients are compared with
previous experimental and theoretical results. Mean flows are also computed and found to be more significant
as the Prandtl number decreastem 0=6.4 too=1). In addition, the mean flow around the outer radius of
the annulus appears to be correlated with the mean flow around the inner radius.

DOI: 10.1103/PhysReVvE.68.066216 PACS nunterd7.54+r, 47.20.Bp, 47.32:y, 47.27.Te

I. INTRODUCTION where « is the thermal-expansion coefficient agdis the
acceleration of gravity. The variable is the dimensionless

One of the most productive systems for studying patterrrotation rate {1 =Qd? v). The aspect rati® is defined as
formation is Rayleigh-Beard convectior{1]. In Rayleigh- the ratio of the radius of the cell to its depdhThe centrifu-
Benard convection, a fluid cell bounded by parallel plates isgal force has been neglected because it is small relative to
kept at a constant temperature differedCE. This leads to a the gravitational force((l%r/g<1) for our rotation rates.
buoyancy-driven instability ad T increases past a critical We have performed our numerical simulations of the
value. In rotating convection, the entire cell is rotated abouBoussinesq equations using a parallel, spectral element code
a vertical axis with a constant rotation rdig, . For certain  [12]. We used no-slip velocity boundary conditions along the
choices of the parameters, traveling-wave wall modes havealls (as written in a cylindrical coordinate system
been found experimentallj2—5], and studied theoretically
[6—11]. However, the nonlinear theories have assumed either U =Us=U,=0 at r=ri,,ro; and z=0,1. (4)
free-slip boundary conditions and semi-infinite geometries . . .
[6,9,10 or no-slip boundary conditions with periodic bound- F'or our temperature boundary conditions, we used insulating
ary conditiong 7]. A recent theoretical analysi¢1] has used sidewalls and constant values along the top and bottom
realistic no-slip boundary conditions, but still neglects cur-Plates:
vature effects. Here we use numerical simulations with no-
slip boundary conditions and finite annular geometries, with
the same parameters that experimenters have [dged T=1 atz=0, T=0 atz=1. ©6)

The system is modeled by the Boussinesq equations aug-
mented by a Coriolis forcgs]. The variables are nondimen- As the Rayleigh number is increased, for large enough
sionalized by specifying the length in terms'of the ceI.I height,otation rates, the conduction profile gives way to a
d, the temperature in terms &fT, and 2the time in units of 4 eling-wave state localized along the walls. See Fig. 1 for
the vertical thermal diffusion time, =d"/«, wherex is the  examples. In the rotating frame, the inner and outer waves
thermal diffusivity. The equations are are counterpropagating, and the outer wave moves in the
opposite direction of the rotation. As the Rayleigh number is
increased even higher, this wall mode transitions to a bulk
o= mode. In the case of zero rotation rate, patterns seen were
(6+0-V)T=V2T, (2 similar to the results from simulations done by Sensoy and

Greensidd 13].

3,T=0 atr=ri,"ou: (5)

o Y9, +0-V)i=—VP+V20+RTz+2Q0x2, (1)

V-a=0. €)

The variabledi(,t) is the velocity field, P(7,t) is the Il COMPLEX GINZBURG-LANDAU EQUATION

pressure, and (r,t) is the temperature. The symb@l indi- The wall mode is useful to study because, for large

cates time differentiation aritlis a unit vector in the vertical enough separation between inner and outer walls, the waves

direction. The Prandtl number=v/x, wherev is the kine- are mostly decoupled. Therefore, the outer wémeinney

matic viscosity. The Rayleigh numbeR=agATd*/ kv, can be treated essentially as having only one spatial dimen-
sion. For all our cases, we analyzed the outer wave unless
otherwise specifieflL4]. See Fig. 2 for examples of tempera-

*Electronic address: jscheel@caltech.edu ture versus angle data at fixed outer radius.
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FIG. 2. Temperature deviations as a function of anglep at
fixed outer radius for@ t=0.8, and(b) t=3.44. The following
parameters were used: inner radids outer radius5, 0=6.4,
€=0.13,0=274.

guency, and , is the outer radius. The functiop(r,z) rep-
resents the decay into the bulk, which is obtained from a
linear stability analysis. Note that we have used the conven-
tion that the wave numbey=mode number/,, since the
decay length into the bulk is rather short, i.e., of the order of
the depth. We then expect the complex amplitédéo be
described by the Complex Ginzburg-Landau equation
(CGLE) [15-17:

To( A+ S ) A= €(1+iCo) A+ EX(1+i Cp)dyA
—g(1+icy)|AlPA, (8)

where g, represents partial differentiation with respectxto
=r,¢. The small parametee=(R—R.)/R. represents the
\ deviation fromR;, the critical Rayleigh number where con-
-, duction gives way to convection. The coefficieatsand &,
(b) are the characteristic time and length scales, respectively.
The coefficients is the group velocityg gives the normal-
FIG. 1. Snapshot of temperatur€ at the midplane, for ization of the amplitude, and, is a constant that can be
traveling-wave wall modes with the following parametess:6.4,  removed by transforming to a phase rotating frame. Since all
and either(a) inner radius-10, outer radius 15, €=0.017,Q2=70,  the other coefficients can be scaled or transformed awyay,

t=237 or (b) inner radius-1, outer radius'5, e=0.13, 2=274,t  gnqc, essentially determine the behavior of the CGB].
=3. The lightest gray in the center of the annular region denotes';f c,=c; or ¢, andcs are small, the equation is in the re-

the conduction valueT=0.5) and darker gray scale deviations give laxational limit. where the CGLE reduces to the real

]Egre (\;?h;?]?j%bz\s/?oag(ég?% tm;g’vthh';?t;zni%i;r;bg%'iitt;3\'/2\1/63 Ginzburg-Landau equation and steady patterns are seen. If
’ ‘ ' ' c1C3+1<0, the Newell criterion is reached, and solutions

are counterpropagating. to the CGLE enter a spatiotemporal chaotic regime.

Near threshold, we can model this system with an ampli-

tude equatior{6]. We set the temperature deviatigh=T Method of determining the coefficients
— T, [where Ty(2) is the linear conduction profileto be The temperature deviation(¢) for a fixed radiusr ),
equal to depthz and timet as shown in Fig. 2 can be spatially de-

modulated by Fourier analysis. By choosing random initial
0(p,r,z,t)=A(¢,t)expi[qer op— ot x(r,2),  (7)  conditions, one can cause a rather large number of modes to
be present. The amplitude of each individual mode as a func-
whereq. is the critical wave numbei.e., the wave number tion of time is shown in Fig. 3 for a representative case. At
at the onset of convectionw, is the critical precession fre- early times {<0.75), one can see the growftecay of
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FIG. 3. Amplitudes| 4| of individual modes(obtained by Fou-
rier analysi$ vs time. Only the modes that have significant ampli-  FIG. 5. Marginal stability diagram for the parameters as in Fig.
tudes are plotted, which range framgg=2 to 40 (,q.=21 here. 2. Data points were computed by finding the roots of the growth
The parameters are as in Fig. 2. The largest amplitude mode correurves shown in Fig. 4. The dashed curve is a fourth-order polyno-
sponds to a mode number of 21. mial fit. The vertical dotted line is aj=q.=4.2.

stable (unstabl¢ modes. After some time has elapsed ( With respect to timéthe phase is also obtained from Fourier

~1.5), the nonlinearities cause this growth to saturate. ~ demodulation of/(¢)]. Some representative cases are shown
We can take advantage of these individual modes to dél Fig. 6. The negative sign on the precession frequency

termine the CGLE coefficients. In Fig. 4 we show the growthindicates that it is retrograde.

rates as a function of wave number for fixedwhich were We now assume that the complex amplitude can be writ-

determined by taking the slopes of each of the mode curve§n as the sum of individual mod¢20],

in the linear regime. Only modes with significant growth

rates or small decay rates are shown in Fig. 4. By finding the A(p,t)= Z a ekt tikrod—oy),

roots of each of these curves, one can find the borders of the k

marginal stability diagram. This is shown in Fig. 5. For wave

numbers inside the dashed line, the uniform state will beThe variablea, represents the amplitude of each mogigis
unstable to wall modes. K

In Fia. 4. th togeth 0. Thi it the growth rate, antt and w, represent the difference in the
_n 'gt' d'f € ctuhrv?s me_rged oge e:m&d' ISI resu fthWave number and precession frequency for that particular
IS expected from ne ineéarized, normal-mode analysis o ode as referenced to the critical valueg (w.). If these
Boussinesq equationsl9]. The growth rate approaches a

. are substituted into Eq8) and linearized, one obtains for
constant value ag approaches zero, independenteof

Likewise the precession frequencies of each of the indi-eaCh individual modeby equating real and imaginary parts

vidual modes can be found from the rate of change of phase

(€)
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FIG. 6. Precession frequeney as a function of reduced wave
numberk=q—q., whereq. is the critical wave numbef4.2 for
FIG. 4. Growth ratesy as a function of wave numbeyfor the this particular set of parameters—see Fi@. Phe markers corre-
parameters as in Fig. 2. The markers correspond to the followingpond toe’s: 0=0.003,*=0.10,+=0.21. The curves shown are the

values ofe: *=0.003,x=0.05, +=0.10, 0=0.15,-=0.21. The ver-  fits to Eq.(11), where the values of the CGLE coefficients are given
tical dotted line is afj=q.=4.2(i.e., r,g.=21). in Table I.
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Y=Tq 1(6_ §§ k2), (10) . TABLE I. CQLE coefficients fgr the sy;tem parameters given in
Fig. 4. Comparisons are made with experimgi = Liu and Ecke
w =S k+ 7, 1(_ €Cy+t 5(2) cy kz)_ (11) [4]) and theoryyKC=Kuo and Cros$6], P=Plaut[Table | of Ref.

[11]]. Also note we foundy=0.60g¢;=0.44¢£;=0.12.

If we drop the subscripts and instead think pfand w as

functions ofk as well ase, then we can compute all of the Present
linear coefficients of the CGLE by taking various partial de- work LE KC P
rivatives: Re 19500 20850 19500 19660
1 ay Qe 4.2 4.65 4.00 4.22
- _ 27 , (12 -223 -22.0 —-24.0 -22.4
To  J€| o 0.025 .03 0.026 0.025
&o 0.22 0.179 0.24 0.21
(92
52: TV (13) S 2.0 2.65 2.22 1.91
o2 0K g 1.63 0.74 1.11 0.53
75 (Co—Cy) 6.4 4.2 14.4 6.40
-1
S:(;_cl: , (14 7o (Co—Cg) 19.3 20.4 19.2 19.7
e=k=0
velocity boundary conditiong11] is very good, whereas
_ do there is understandably some disagreement with the theory
Co= " To>_ ) (15 . . .\
€| __o that employed free-slip velocity boundary conditigf$ We
find only partial agreement with the experimental results.
7o o However, the coefficients are all extremely sensitive to the
01:? ra (16) fit, as can been seen in Fig. 6. Representative data for pre-
© e=k=0 cession frequency are plotted along with a fit to the linear-
Since we can calculat&(e,k) and w(e,k) from (fourth- ized CGLE(ll) with the values of the coefficients given in
orden polynomial fits to the datésee Figs. 4 and)gwe can Table I. The fits are good only very_close to threshahall
compute each of these coefficiefid]. e and smallk). Higher-order corrections to the CGLE would

The nonlinear coefficients,cs can be found by using IMProve the fits, as was appropriately explored in Réf.

initial conditions so that only a single modg is excited. If
the nonlinear terms are retained, the single mode versions of . MEAN FLOW

Egs.(10) and(11) are Here we explore the role mean flow plays in rotating con-
_. -1 2 2 vection. Theoretically one expects mean flow to be important
= - ¢, ki—glal?), 1 . - :

r=7o (e~ &k —glal®) (7 for multiply connected domains like an annul{isl,25.

Mean flow in nonrotating convection arises from large-scale

variations in local wave number and amplitude, which cause

If we are far enough into the nonlinear regime, we can set th@onlocal pressure gradier{t6,27. For rotating convection,

growth rate to zero and determige Egg]travellng wave propagation will also drive a mean flow

We calculated the total mean flow for our system by per-

w=Skst+ 75 (—eCo+ & C Ko+ g Cc3lal?). (18

€

9= (19 forming an average of the horizontal velocily = (u, ,u,)
r=ks=0 over the depth and the radius:
Likewise, if we eliminateg, we obtain ) out T
(u(¢>,t)>r,z=f drj dzu, (r,¢,z,1). (22
dw Tin 0
Co= Ca=—To— (20 . -
€l =e=k.=0 Often it is useful to separate the mean flow for the inner and

outer waves, by performing the radial average only to the
We use the normalization convention described in the Ap+adius half way between the inner and outer radii. Because
pendix. By combining Eq919) and (A1), we can eliminate the traveling waves decay exponentially into the bulk, these
the amplitude and solve fay by simply looking at how the half-averaged mean flows are a good measure of the inner

Nusselt numbe scales withe: and outer mean flows. For our traveling-wave triedghen
the inner and outer waves are decoupléde mean flow is

¢ observed to be in the same direction as the phase velocity of

N-1= 55' (1) the waves, so the outer mean flow is retrograde and the inner

flow is in the same direction as the rotation.
The results are shown in Tabld22]. Agreementexcept Results for various geometries and parameters are shown
for the value ofg [23]) with the theory that uses no-slip in Table Il. Mean flow is present in all cases, but it becomes
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TABLE II. Tangential mean flow results. The fluctuating components ingtttBrection(see Fig. 7 have
been averaged over for inner and outer mean flows. The velocities are scategblefined in EqA3). The
root-mean-square convection velocity, is given in the last column. In all cases, traveling waves were
stable, and random initial conditions were used.

a<u¢>z,r,¢ a’<u¢>z,r,¢ a<ud>>z,r

Fin T out R Q o t Inner half Outer half Total Urms

15 23500 274 6.40 3.0 0.334 —0.448 —-0.114 2.774
15 23500 274 1.00 3.0 0.650 —0.918 —0.268 3.194
10,15 23500 274 6.40 3.0 0.423 —0.438 —0.015 2.702
10,15 23500 274 1.00 3.0 0.820 —0.875 —0.055 3.026
10,15 6500 70 6.40 12.0 0.205 —0.220 —0.015 2.340

more significant for smaller Prandtl number. Also, the mode is presenfobtained by starting with initial conditions
component of total mean flo22) is nonzero but decreases resembling the desired modéefects and large-scale wave
as the aspect ratio increases. This result indicates that theumber variations are thought to be a reason for the mean
total tangential mean flow is due to the fractional differenceflow correlations. This aspect of mean flow is being investi-
in radii between the inner and outer waves, and the totayated.
tangential mean flow should become zero as the aspect ratio
goes to infinity. The last line of Table Il corresponds toean
of 0.08, and is included for comparison with Plaut’s theoret-
ical calculations shown in Fig. 5 of Rdfl1]. The parameters
used in Ref[11] are(2=100,0=6.3=0.1,r,;—ri,=3. If Traveling-wave wall states were observed in numerical
we radially average the azimuthal component of the largesimulations of the Boussinesq equations with rotation for
scale mean flow data over the outer half of the geometricaéxperimentally realistic geometries and boundaries. The
domain used in Ref11], we obtain a value o&—0.4. This  CGLE coefficients were computed and agfercept for the
agrees to within 5% of our value for the outer half mean flowyg|ye ofg) with experiment and theory. So far the coeffi-
if we take into account the scaling discrepancygifrom  cients found have been close to the relaxational limit, ¢;
Table | and hencer in Eq. (A3). _ small, where coherent patterns are expected. A search is
The outer and inner wave tangential mean flows have,,rrently being conducted in the parameter range where van
small fluctuating components in the angular coordinate aBjacke and van Saarloos suggest chaotic dynamics [@fist
seen in Fig. 7. These components are equal and opposite, A5t is wheree: ca< — 1
they must be, to satisfy incompressibility. Thus, the tangen- 1+3 ' S
. o Mean flow was also calculated and seen to be significant
tial component of théotal mean flow(u,): is independent for a rotating annulus. Mean flow correlations were ob-
of the angular coordinateé. The presence of these fluctua- ng S . .
tions indicates that the outer and inner mean flows are Cors_,erved, which provide a Iong-ra_mge coupling between inner
related. The fluctuations are not seen when only a singlélnd oute.r waves that otherWls_e WOl,Jld be .expon.e.ntlally
small. This phenomenon will be investigated, in addition to
looking at nonuniform thermal boundary conditions that may

IV. CONCLUSION

0.06} ~ --- r>125 4 lead to interacting waves. We also plan to use a technique of
b ——r<i25 guenching the mean floy29,3Q to see what effect it has on
N the traveling-wave patterns, and in particular whether it
AL causes or suppresses any chaotic motion.
y
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APPENDIX: SCALING the area occupied by the waves to the total area of the cell

The magnitude of the amplitudbA| depends on the [4], so we define our proportionality constanto be

choice of normalization for the linear moggr,z). Typi- (20 g 1)+ (2 + 1)
cally the scaling of the amplitude is defined so that the Nus- :( out n ) , (A2)
selt number\/is proportional to the amplitude squarg?, r2era
N-1=|Af%c. (Al)  where we have estimated the penetration of the wave in the

. ) radial direction to be 1in depth unit$. As a result, we can
The Nusselt number is the ratio of the total heat flux to thedefine a scaling constant

heat flux in the conduction regime. For the nonrotating case,
since the convection extends over the whole @ei, chosen N—1
to be unity. In the case of traveling waves, the convention a=

- - ~ Vear -
has been to use a scale factororresponding to the ratio of

t—oo
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