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Traveling waves in rotating Rayleigh-Bénard convection: Analysis of modes and mean flow
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Numerical simulations of the Boussinesq equations with rotation for realistic no-slip boundary conditions
and a finite annular domain are presented. These simulations reproduce traveling waves observed experimen-
tally. Traveling waves are studied near threshhold by using the complex Ginzburg-Landau equation~CGLE!: a
mode analysis enables the CGLE coefficients to be determined. The CGLE coefficients are compared with
previous experimental and theoretical results. Mean flows are also computed and found to be more significant
as the Prandtl number decreases~from s56.4 tos51!. In addition, the mean flow around the outer radius of
the annulus appears to be correlated with the mean flow around the inner radius.
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I. INTRODUCTION

One of the most productive systems for studying patt
formation is Rayleigh-Be´nard convection@1#. In Rayleigh-
Bénard convection, a fluid cell bounded by parallel plates
kept at a constant temperature differenceDT. This leads to a
buoyancy-driven instability asDT increases past a critica
value. In rotating convection, the entire cell is rotated ab
a vertical axis with a constant rotation rateVD . For certain
choices of the parameters, traveling-wave wall modes h
been found experimentally@2–5#, and studied theoretically
@6–11#. However, the nonlinear theories have assumed ei
free-slip boundary conditions and semi-infinite geometr
@6,9,10# or no-slip boundary conditions with periodic boun
ary conditions@7#. A recent theoretical analysis@11# has used
realistic no-slip boundary conditions, but still neglects c
vature effects. Here we use numerical simulations with
slip boundary conditions and finite annular geometries, w
the same parameters that experimenters have used@4#.

The system is modeled by the Boussinesq equations
mented by a Coriolis force@6#. The variables are nondimen
sionalized by specifying the length in terms of the cell heig
d, the temperature in terms ofDT, and the time in units of
the vertical thermal diffusion timetv5d2/k, wherek is the
thermal diffusivity. The equations are

s21~] t1uW •¹W !uW 52¹W P1¹2uW 1RTẑ12VuW 3 ẑ, ~1!

~] t1uW •¹W !T5¹2T, ~2!

¹W •uW 50. ~3!

The variableuW (rW,t) is the velocity field,P(rW,t) is the
pressure, andT(rW,t) is the temperature. The symbol] t indi-
cates time differentiation andẑ is a unit vector in the vertica
direction. The Prandtl numbers5n/k, wheren is the kine-
matic viscosity. The Rayleigh numberR5agDTd3/kn,
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where a is the thermal-expansion coefficient andg is the
acceleration of gravity. The variableV is the dimensionless
rotation rate (V5VDd2/n). The aspect ratioG is defined as
the ratio of the radius of the cell to its depthd. The centrifu-
gal force has been neglected because it is small relativ
the gravitational force (VD

2 r /g!1) for our rotation rates.
We have performed our numerical simulations of t

Boussinesq equations using a parallel, spectral element
@12#. We used no-slip velocity boundary conditions along t
walls ~as written in a cylindrical coordinate system!:

ur5uf5uz50 at r 5r in ,r out and z50,1. ~4!

For our temperature boundary conditions, we used insula
sidewalls and constant values along the top and bot
plates:

] rT50 at r 5r in ,r out, ~5!

T51 at z50, T50 at z51. ~6!

As the Rayleigh number is increased, for large enou
rotation rates, the conduction profile gives way to
traveling-wave state localized along the walls. See Fig. 1
examples. In the rotating frame, the inner and outer wa
are counterpropagating, and the outer wave moves in
opposite direction of the rotation. As the Rayleigh numbe
increased even higher, this wall mode transitions to a b
mode. In the case of zero rotation rate, patterns seen w
similar to the results from simulations done by Sensoy a
Greenside@13#.

II. COMPLEX GINZBURG-LANDAU EQUATION

The wall mode is useful to study because, for lar
enough separation between inner and outer walls, the wa
are mostly decoupled. Therefore, the outer wave~or inner!
can be treated essentially as having only one spatial dim
sion. For all our cases, we analyzed the outer wave un
otherwise specified@14#. See Fig. 2 for examples of temper
ture versus angle data at fixed outer radius.
©2003 The American Physical Society16-1
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Near threshold, we can model this system with an am
tude equation@6#. We set the temperature deviationu5T
2To @where To(z) is the linear conduction profile# to be
equal to

u~f,r ,z,t !5A~f,t !exp~ i @qcr of2vct# !x~r ,z!, ~7!

whereqc is the critical wave number~i.e., the wave numbe
at the onset of convection!, vc is the critical precession fre

FIG. 1. Snapshot of temperatureT at the midplane, for
traveling-wave wall modes with the following parameters:s56.4,
and either~a! inner radius510, outer radius515, e50.017,V570,
t537 or ~b! inner radius51, outer radius55, e50.13, V5274, t
53. The lightest gray in the center of the annular region deno
the conduction value (T50.5) and darker gray scale deviations gi
the values above and below this, which range fromT50.49 to 0.51
for ~a!, and 0.45 to 0.55 for~b!. Note that the inner and outer wave
are counterpropagating.
06621
i-

quency, andr o is the outer radius. The functionx(r ,z) rep-
resents the decay into the bulk, which is obtained from
linear stability analysis. Note that we have used the conv
tion that the wave numberq5mode number/r o , since the
decay length into the bulk is rather short, i.e., of the order
the depth. We then expect the complex amplitudeA to be
described by the Complex Ginzburg-Landau equat
~CGLE! @15–17#:

to~] t1s]x!A5e~11 ico!A1jo
2~11 i c1!]xxA

2g~11 i c3!uAu2A, ~8!

where]x represents partial differentiation with respect tox
[r of. The small parametere5(R2Rc)/Rc represents the
deviation fromRc , the critical Rayleigh number where con
duction gives way to convection. The coefficientsto andjo
are the characteristic time and length scales, respectiv
The coefficients is the group velocity,g gives the normal-
ization of the amplitude, andco is a constant that can b
removed by transforming to a phase rotating frame. Since
the other coefficients can be scaled or transformed awayc1
andc3 essentially determine the behavior of the CGLE@18#.
If c15c3 or c1 and c3 are small, the equation is in the re
laxational limit, where the CGLE reduces to the re
Ginzburg-Landau equation and steady patterns are see
c1 c311,0, the Newell criterion is reached, and solutio
to the CGLE enter a spatiotemporal chaotic regime.

Method of determining the coefficients

The temperature deviationsu(f) for a fixed radiusr o ,
depthz, and timet as shown in Fig. 2 can be spatially de
modulated by Fourier analysis. By choosing random init
conditions, one can cause a rather large number of mode
be present. The amplitude of each individual mode as a fu
tion of time is shown in Fig. 3 for a representative case.
early times (t&0.75), one can see the growth~decay! of

s

FIG. 2. Temperature deviationsu as a function of anglef at
fixed outer radius for~a! t50.8, and~b! t53.44. The following
parameters were used: inner radius51, outer radius55, s56.4,
e50.13,V5274.
6-2



(

d
th

rv
th
th
f t
ve
b

th
a

d
a

er
wn
ncy

rit-

e
ular

r
s

li-

or

in

ig.
th

no-

e

e
en
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stable ~unstable! modes. After some time has elapsedt
'1.5), the nonlinearities cause this growth to saturate.

We can take advantage of these individual modes to
termine the CGLE coefficients. In Fig. 4 we show the grow
rates as a function of wave number for fixede, which were
determined by taking the slopes of each of the mode cu
in the linear regime. Only modes with significant grow
rates or small decay rates are shown in Fig. 4. By finding
roots of each of these curves, one can find the borders o
marginal stability diagram. This is shown in Fig. 5. For wa
numbers inside the dashed line, the uniform state will
unstable to wall modes.

In Fig. 4, the curves merge together asq→0. This result
is expected from the linearized, normal-mode analysis of
Boussinesq equations@19#. The growth rate approaches
constant value asq approaches zero, independent ofe.

Likewise the precession frequencies of each of the in
vidual modes can be found from the rate of change of ph

FIG. 3. Amplitudesuuu of individual modes~obtained by Fou-
rier analysis! vs time. Only the modes that have significant amp
tudes are plotted, which range fromr oq52 to 40 (r oqc521 here!.
The parameters are as in Fig. 2. The largest amplitude mode c
sponds to a mode number of 21.

FIG. 4. Growth ratesg as a function of wave numberq for the
parameters as in Fig. 2. The markers correspond to the follow
values ofe: *50.003,x50.05, 150.10, o50.15,•50.21. The ver-
tical dotted line is atq5qc54.2 ~i.e., r oqc521).
06621
e-

es

e
he

e

e

i-
se

with respect to time@the phase is also obtained from Fouri
demodulation ofu~f!#. Some representative cases are sho
in Fig. 6. The negative sign on the precession freque
indicates that it is retrograde.

We now assume that the complex amplitude can be w
ten as the sum of individual modes@20#,

A~f,t !5(
k

ake
gkt1 i (krof2vkt). ~9!

The variableak represents the amplitude of each mode,gk is
the growth rate, andk andvk represent the difference in th
wave number and precession frequency for that partic
mode as referenced to the critical values (qc ,vc). If these
are substituted into Eq.~8! and linearized, one obtains fo
each individual mode~by equating real and imaginary part!

re-

g

FIG. 5. Marginal stability diagram for the parameters as in F
2. Data points were computed by finding the roots of the grow
curves shown in Fig. 4. The dashed curve is a fourth-order poly
mial fit. The vertical dotted line is atq5qc54.2.

FIG. 6. Precession frequencyv as a function of reduced wav
numberk5q2qc , whereqc is the critical wave number~4.2 for
this particular set of parameters—see Fig. 2!. The markers corre-
spond toe’s: o50.003,*50.10,150.21. The curves shown are th
fits to Eq.~11!, where the values of the CGLE coefficients are giv
in Table I.
6-3
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gk5to
21~e2jo

2 k2!, ~10!

vk5s k1to
21~2e co1jo

2 c1 k2!. ~11!

If we drop the subscripts and instead think ofg and v as
functions ofk as well ase, then we can compute all of th
linear coefficients of the CGLE by taking various partial d
rivatives:

1

to
5

]g

]eU
e5k50

, ~12!

jo
252

to

2

]2g

]k2 U
e5k50

, ~13!

s5
]v

]k U
e5k50

, ~14!

co52to

]v

]e U
e5k50

, ~15!

c15
to

2jo
2

]2v

]k2 U
e5k50

. ~16!

Since we can calculateg(e,k) andv(e,k) from ~fourth-
order! polynomial fits to the data~see Figs. 4 and 6!, we can
compute each of these coefficients@21#.

The nonlinear coefficientsg,c3 can be found by using
initial conditions so that only a single modeks is excited. If
the nonlinear terms are retained, the single mode version
Eqs.~10! and ~11! are

g5to
21~e2jo ks

22g uau2!, ~17!

v5s ks1to
21~2e co1jo c1 ks

21g c3 uau2!. ~18!

If we are far enough into the nonlinear regime, we can set
growth rate to zero and determineg,

g5
e

ua2uU
g5ks50

. ~19!

Likewise, if we eliminateg, we obtain

co2c352to

]v

]e U
g5e5ks50

. ~20!

We use the normalization convention described in the A
pendix. By combining Eqs.~19! and~A1!, we can eliminate
the amplitude and solve forg by simply looking at how the
Nusselt numberN scales withe:

N215
c

g
e. ~21!

The results are shown in Table I@22#. Agreement~except
for the value ofg @23#! with the theory that uses no-sli
06621
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e
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velocity boundary conditions@11# is very good, whereas
there is understandably some disagreement with the th
that employed free-slip velocity boundary conditions@6#. We
find only partial agreement with the experimental resu
However, the coefficients are all extremely sensitive to
fit, as can been seen in Fig. 6. Representative data for
cession frequency are plotted along with a fit to the line
ized CGLE~11! with the values of the coefficients given i
Table I. The fits are good only very close to threshold~small
e and smallk). Higher-order corrections to the CGLE woul
improve the fits, as was appropriately explored in Ref.@4#.

III. MEAN FLOW

Here we explore the role mean flow plays in rotating co
vection. Theoretically one expects mean flow to be import
for multiply connected domains like an annulus@11,25#.
Mean flow in nonrotating convection arises from large-sc
variations in local wave number and amplitude, which cau
nonlocal pressure gradients@26,27#. For rotating convection,
the traveling wave propagation will also drive a mean flo
@28#.

We calculated the total mean flow for our system by p
forming an average of the horizontal velocityuW'5(ur ,uf)
over the depth and the radius:

^uW ~f,t !& r ,z5E
r in

r out
drE

0

1

dzuW'~r ,f,z,t !. ~22!

Often it is useful to separate the mean flow for the inner a
outer waves, by performing the radial average only to
radius half way between the inner and outer radii. Beca
the traveling waves decay exponentially into the bulk, the
half-averaged mean flows are a good measure of the in
and outer mean flows. For our traveling-wave trials~when
the inner and outer waves are decoupled!, the mean flow is
observed to be in the same direction as the phase velocit
the waves, so the outer mean flow is retrograde and the in
flow is in the same direction as the rotation.

Results for various geometries and parameters are sh
in Table II. Mean flow is present in all cases, but it becom

TABLE I. CGLE coefficients for the system parameters given
Fig. 4. Comparisons are made with experiment~LE 5 Liu and Ecke
@4#! and theory~KC5Kuo and Cross@6#, P5Plaut @Table I of Ref.
@11##. Also note we foundc050.60,c150.44,c350.12.

Present
work LE KC P

Rc 19500 20850 19500 19660
qc 4.2 4.65 4.00 4.22
vc 222.3 222.0 224.0 222.4
to 0.025 .03 0.026 0.025
jo 0.22 0.179 0.24 0.21
s 2.0 2.65 2.22 1.91
g 1.63 0.74 1.11 0.53
to

21(co2c1) 6.4 4.2 14.4 6.40
to

21(co2c3) 19.3 20.4 19.2 19.7
6-4
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TABLE II. Tangential mean flow results. The fluctuating components in thef direction~see Fig. 7! have
been averaged over for inner and outer mean flows. The velocities are scaled bya as defined in Eq.~A3!. The
root-mean-square convection velocityurms is given in the last column. In all cases, traveling waves w
stable, and random initial conditions were used.

a^uf&z,r ,f a^uf&z,r ,f a^uf&z,r

r in ,r out R V s t Inner half Outer half Total urms

1,5 23500 274 6.40 3.0 0.334 20.448 20.114 2.774
1,5 23500 274 1.00 3.0 0.650 20.918 20.268 3.194
10,15 23500 274 6.40 3.0 0.423 20.438 20.015 2.702
10,15 23500 274 1.00 3.0 0.820 20.875 20.055 3.026
10,15 6500 70 6.40 12.0 0.205 20.220 20.015 2.340
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more significant for smaller Prandtl number. Also, thef
component of total mean flow~22! is nonzero but decrease
as the aspect ratio increases. This result indicates tha
total tangential mean flow is due to the fractional differen
in radii between the inner and outer waves, and the t
tangential mean flow should become zero as the aspect
goes to infinity. The last line of Table II corresponds to ane
of 0.08, and is included for comparison with Plaut’s theor
ical calculations shown in Fig. 5 of Ref.@11#. The parameters
used in Ref.@11# areV5100,s56.3,e50.1, r out2r in53. If
we radially average the azimuthal component of the lar
scale mean flow data over the outer half of the geometr
domain used in Ref.@11#, we obtain a value of'20.4. This
agrees to within 5% of our value for the outer half mean fl
if we take into account the scaling discrepancy ing from
Table I and hencea in Eq. ~A3!.

The outer and inner wave tangential mean flows h
small fluctuating components in the angular coordinate
seen in Fig. 7. These components are equal and opposit
they must be, to satisfy incompressibility. Thus, the tang
tial component of thetotal mean flow^uf& r ,z is independent
of the angular coordinatef. The presence of these fluctu
tions indicates that the outer and inner mean flows are
related. The fluctuations are not seen when only a sin

FIG. 7. Tangential mean flow averaged over the outer~or inner!
half of the annulus, where the average over the angular coord
f has been subtracted for ease of comparison~see Table II for these
averages!. Data are for inner radius510, outer radius515, s
51.0, R5235 00,V5274, t53.
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mode is present~obtained by starting with initial conditions
resembling the desired mode!. Defects and large-scale wav
number variations are thought to be a reason for the m
flow correlations. This aspect of mean flow is being inves
gated.

IV. CONCLUSION

Traveling-wave wall states were observed in numeri
simulations of the Boussinesq equations with rotation
experimentally realistic geometries and boundaries. T
CGLE coefficients were computed and agree~except for the
value of g) with experiment and theory. So far the coef
cients found have been close to the relaxational limit (c1 ,c3

small!, where coherent patterns are expected. A searc
currently being conducted in the parameter range where
Hecke and van Saarloos suggest chaotic dynamics exist@9#,
that is wherec1c3,21.

Mean flow was also calculated and seen to be signific
for a rotating annulus. Mean flow correlations were o
served, which provide a long-range coupling between in
and outer waves that otherwise would be exponentia
small. This phenomenon will be investigated, in addition
looking at nonuniform thermal boundary conditions that m
lead to interacting waves. We also plan to use a techniqu
quenching the mean flow@29,30# to see what effect it has on
the traveling-wave patterns, and in particular whether
causes or suppresses any chaotic motion.
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APPENDIX: SCALING

The magnitude of the amplitudeuAu depends on the
choice of normalization for the linear modex(r ,z). Typi-
cally the scaling of the amplitude is defined so that the N
selt numberN is proportional to the amplitude squareduAu2,

N215uAu2c. ~A1!

The Nusselt number is the ratio of the total heat flux to
heat flux in the conduction regime. For the nonrotating ca
since the convection extends over the whole cell,c is chosen
to be unity. In the case of traveling waves, the convent
has been to use a scale factorc corresponding to the ratio o
id

r
u-
wi
a

,

06621
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the area occupied by the waves to the total area of the
@4#, so we define our proportionality constantc to be

c5S ~2r out21!1~2r in11!

r out
2 2r in

2 D , ~A2!

where we have estimated the penetration of the wave in
radial direction to be 1~in depth units!. As a result, we can
define a scaling constant

a5AN21

cuAu2 U
t→`

. ~A3!
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