Figure 1 shows a simplified model of one of the methods used for silicon crystal growth. For $x < -L$, a long crucible (heat pipe) is maintaining silicon in the molten state at T_m (silicon melting temperature). For $x > 0$ the silicon is cooled. The region $-L < x < 0$ is kept adiabatic. The objective of the process is to adjust the velocity by which the melt is fed into the system such that the solid-liquid interface is located within the adiabatic zone. In order to estimate the value for the maximum allowable velocity for these conditions (interface located at $x = 0$), model the above process by neglecting radial temperature gradients in the silicon (i.e. use the fin approximation).

(i) Draw a control volume and determine the governing equations for both the adiabatic zone ($-L < x < 0$), and for $x > 0$, assuming that the solid-liquid interface is located at $x = 0$. (50%)

Consider steady-state. Assume that the thermophysical properties (including the density ρ) of the solid and the liquid are identical. Beside the symbols given in Fig. 1, the cross sectional area is A, perimeter of the cross section is P, heat capacity per unit mass is c_p, the thermal conductivity is k.

For $-L < x < 0$, consider heat conduction and advection.

For $x > 0$, consider heat conduction, advection and convection.

The boundary conditions are:

$x = -L$ \hspace{1cm} $T = T_m$

$x = 0$ \hspace{1cm} $T = T_m$

$x = 0$ \hspace{1cm} $-kA \frac{\partial T}{\partial x} \bigg|_{x=0}^- + kA \frac{\partial T}{\partial x} \bigg|_{x=0}^+ + \rho V A h_{fs} = 0$

$x \to \infty$ \hspace{1cm} T is finite

where h_{fs} is the enthalpy of solidification.

(i) Solve the governing equations for the temperature distribution in each zone. (25%)

(ii) Determine the velocity required for the interface to be located at $x = 0$. (15%)

(iii) Describe qualitatively how the solid-liquid interface would move if the velocity is lower than this critical value, and what would happen if it is higher. (10%)